UNICYCLE GRAPHS WITH THE FIRST THREE EXTREMAL ZEROTH-ORDER GENERAL RANDIĆ INDICES

HONGZHUAN WANG, DONGDONG WANG and SHU WEN

Department of Computing Science
Huaiyin Institute of Technology
Huaian, Jiangsu 223000
P. R. China
e-mail: hongzhuanwang@gmail.com

Abstract

Let $G = (V, E)$ be a graph and d_v the degree of the vertex v. The zeroth-order general Randić index of G is defined as: $R_{G}^{0}(G) = \sum_{v \in V} d_v^\alpha$, where α is an arbitrary real number. In this paper, we characterize the unicycle graphs of order n with the first three largest and the first three smallest zeroth-order general Randić indices.

1. Introduction

Let $G = (V(G), E(G))$ denote a graph with $V(G)$ as the set of vertices and $E(G)$ as the set of edges. $N_G(v_i)$ denotes the neighbors of v_i. The Randić index of G defined in [13] is

$$R(G) = \sum_{uv \in E(G)} \frac{1}{\sqrt{d_u d_v}}.$$
where $d_v = d_G(v)$ denotes the degree of the vertex v in G. Randić demonstrated that his index is well correlated with a variety of physicochemical properties of an alkane. The index $R(G)$ has become one of the most popular molecular descriptors. The interesting reader is referred to [1-3, 11-13]. Eventually, countless research papers are devoted. The zeroth-order Randić index $R^0(G)$ of G defined by Kier and Hall [8] is given by $R^0(G) = \sum_{v \in V(G)} \frac{1}{\sqrt{d_v}}$. Pavlović [11] gave the unique graph with largest value of $R^0(G)$. In [5], Lielal investigated the same problem for the topological index $M_1(G)$, also known as the first Zagreb index [14], which is defined as $M_1(G) = \sum_{v \in V(G)} d_v^2$. Li and Zheng [10] defined the zeroth-order general Randić index of a graph G as:

$$R_\alpha^0(G) = \sum_{v \in V(G)} d_v^\alpha,$$

where α is a real number. For α being one of $m, -m, \frac{1}{m}, -\frac{1}{m}$, where $m \geq 2$ is an integer, Li and Zhao [9] characterized the trees with the first three largest and smallest zeroth-order general Randić index; Wang and Deng [15] characterized the unicycle graphs with the maximum zeroth-order general Randić index. Hu et al. [6] characterized the molecular (n, m)-graphs with the smallest and greatest R^0_{α}. Hua and Deng [7] characterized the unicycle graphs with the smallest and greatest R^0_{α}.

In this paper, we investigate the zeroth-order general Randić index for the unicycle graphs. All unicycle graphs with the first three largest and the first three smallest zeroth-order general Randić index are characterized.

All graphs considered here are both finite and simple. We denote the star, path and cycle of order n by S_n, P_n and C_n, respectively. Let $G = (V, E)$ be an unicycle graph of order n with its unique cycle $C_r = v_1v_2$.
...v_r, v_1 of length r, $T_1, T_2, \ldots, T_k (0 \leq k \leq r)$ are the all nontrivial components (they are all nontrivial trees) of $G - E(C_r)$, u_i is the common vertex of T_i and C_r, $i = 1, 2, \ldots, k$. Such an unicycle graph is denoted by $C_r^{u_1, u_2, \ldots, u_k} (T_1, T_2, \ldots, T_k)$. Let $n(T_i) = l_i + 1$ be the number of vertices in tree T_i, then $l = n - r = l_1 + l_2 + l_3 + \cdots + l_k$.

Specially, u_1, u_2, \ldots, u_k are the centers of $S_{l_1+1}, S_{l_2+1}, \ldots, S_{l_k+1}$, respectively, in

$$G_1 = C_r^{u_1, u_2, \ldots, u_k} (S_{l_1+1}, S_{l_2+1}, \ldots, S_{l_k+1})$$

and u_1, u_2, \ldots, u_k are the end-vertices of $P_{l_1+1}, P_{l_2+1}, \ldots, P_{l_k+1}$, respectively, in

$$G_2 = C_r^{u_1, u_2, \ldots, u_k} (P_{l_1+1}, P_{l_2+1}, \ldots, P_{l_k+1}).$$

We also denote $C_3 (S_{n-2})$ by $S_n + e$. $C_3 (P_{n-2})$ is simplified by $C_3 (P_{n-2})$.

$D(G) = [d_1, d_2, \ldots, d_n]$ denotes the degree sequence of a graph G, and $D(G) = [x_1^{q_1}, x_2^{q_2}, \ldots, x_t^{q_t}]$, $x_i^{q_i}$ means that G has a_i vertices of degree x_i, $i = 1, 2, \ldots, t$.

Undefined notations and terminology will conform to those in [9].

2. The Unicycle Graphs with the First Three Largest (Smallest) Zeroth-Order General Randić Indices for $\alpha > 1$ or $\alpha < 0$ ($0 < \alpha < 1$)

We first introduce three transfer operation.

Transfer operation A. Let G be an unicycle graph of order n. If there are vertices u and v such that $d_u = p > 1$, $d_v = q > 1$, $p \leq q$, and u_1, u_2, \ldots, u_k are the neighbors of u. Then G is changed into G' after
the transfer operation A, where $G' = G - \{uu_1, uu_2, \ldots, uu_k\} + \{vu_1, vu_2, \ldots, vu_k\}$, $1 \leq k \leq p$. As shown in Figure 1.

![Figure 1. Transfer operation A.](image)

Lemma 2.1. For the two graphs G and G' above, we have

(i) $R^0_\alpha(G') > R^0_\alpha(G)$ for $\alpha > 1$ or $\alpha < 0$;

(ii) $R^0_\alpha(G') < R^0_\alpha(G)$ for $0 < \alpha < 1$.

Proof. By the definition of $R^0_\alpha(G)$, we have

$$
\Delta = R^0_\alpha(G') - R^0_\alpha(G)
= [(p - k)^\alpha + (q + k)^\alpha] - [p^\alpha + q^\alpha]
= [(q + k)^\alpha - q^\alpha] - [p^\alpha - (p - k)^\alpha]
= \alpha \cdot k(\xi^{\alpha-1} - \eta^{\alpha-1}),
$$

where $\eta \in (p - k, p)$, $\xi \in (q, q + k)$. $\xi > \eta$ since $p \leq q$. Then $\Delta > 0$ when $\alpha > 1$ or $\alpha < 0$; $\Delta < 0$ when $0 < \alpha < 1$. The proof of Lemma 2.1 is completed.

Remark. Repeating operation A, any unicycle graph of order n can be changed into an unicycle graph which has at most one vertex with degree greater than 2 such as $C^n_{ru_1}(T_1)$.
Transfer operation B. Let G be an unicycle graph of order n, uv is an edge of G. $d_G(u) = p \geq 3$, $N_G(v)$ is the neighbors of v, and $N_G(v) - \{u\} = \{w_1, w_2, \ldots, w_l\}$. Then G is changed into G^* first and, then into G'' after operation B, where $G' = G - \{vw_1, vw_2, \ldots, vw_l\} + \{uw_1, uw_2, \ldots, uw_l\}$, $G^* = G - \{vw_2, vw_3, \ldots, vw_l\} + \{uw_2, uw_3, \ldots, uw_l\}$. As shown in Figure 2.

![Figure 2. Transfer operation B.](image)

Lemma 2.2. For the three graphs G, G' and G^* above, we have

(i) $R^0_\alpha(G') > R^0_\alpha(G^*) > R^0_\alpha(G)$ for $\alpha > 1$ or $\alpha < 0$;

(ii) $R^0_\alpha(G') < R^0_\alpha(G^*) < R^0_\alpha(G)$ for $0 < \alpha < 1$.

Proof. If $p \geq l + 1$, then

$$
\Delta = R^0_\alpha(G^*) - R^0_\alpha(G) \\
= [(p + l - 1)^\alpha + 2^\alpha] - [p^\alpha + (l + 1)^\alpha] \\
= [(p + l - 1)^\alpha - p^\alpha] - [(l + 1)^\alpha - 2^\alpha] \\
= \alpha(l - 1)(\zeta^{\alpha-1} - \eta^{\alpha-1}),
$$

where $\eta \in (2, l + 1)$, $\zeta \in (p, p + l - 1)$.

If $p \leq l + 1$, then

$$
\Delta = R^0_\alpha(G^*) - R^0_\alpha(G) \\
= [(p + l - 1)^\alpha + 2^\alpha] - [p^\alpha + (l + 1)^\alpha]
$$
where $\eta \in (2, p)$, $\xi \in (l + 1, p + l - 1)$.

And $\xi > \eta, \Delta > 0$ when $\alpha > 1$ or $\alpha < 0$; $\Delta < 0$ when $0 < \alpha < 1$. The proof of Lemma 2.2 is completed.

Remark. Repeating the operation B, any unicycle graph $G = C_{r_1, u_2, \cdots, u_k}(T_1, T_2, \cdots, T_k)$ can be changed into $C_{r_1, u_2, \cdots, u_k}(S_{i_1}, S_{i_2}, \cdots, S_{i_k})$.

So, an unicycle graph $G = C_{r_1, u_2, \cdots, u_k}(T_1, T_2, \cdots, T_k)$ can be changed into $G' = C_{r_1}(S_{n-r+1})$ after the operations B and A.

Transfer operation C. Let G be an unicycle graph of order n. $C_r = u_1 u_2 \cdots u_r u_1$ is the unique cycle of G. $e = xy$ is a pedant edge of G, and $d_x = 1, d_y \geq 2$. Then G is changed into G' after the transfer operation C, where $G' = G - \{xy, u_i u_{i+1}\} + \{u_i y, u_{i+1} y\}$. As shown in Figure 3.

Figure 3. Transfer operation C.

Lemma 2.3. For the two graphs G and G' above, we have

(i) $R_\alpha^0(G') \leq R_\alpha^0(G)$ for $\alpha > 1$ or $\alpha < 0$;

(ii) $R_\alpha^0(G') \geq R_\alpha^0(G)$ for $0 < \alpha < 1$,
with the equality if and only if $d_x = 2$.

Proof. By the definition of $R^0_\alpha(G)$, we have

$$\Delta = R^0_\alpha(G') - R^0_\alpha(G)$$

$$= [(d_x - 1)^\alpha + 2^\alpha] - [d_x^\alpha + 1^\alpha]$$

$$= [2^\alpha - 1^\alpha] - [d_x^\alpha - (d_x - 1)^\alpha]$$

$$= \alpha(\xi^{\alpha-1} - \eta^{\alpha-1}),$$

where $\eta \in (d_x - 1, d_x)$, $\xi \in (1, 2)$. $\xi < \eta$ since $d_x \geq 2$. $\Delta < 0$ when $\alpha > 1$ or $\alpha < 0$; $\Delta > 0$ when $0 < \alpha < 1$. The proof of Lemma 2.3 is completed.

From Lemma 2.3, we know that $R^0_\alpha(C^u_r(S_{n-r+1}))$, $3 \leq r \leq n$, is the monotone function of r.

If $3 \leq r \leq r' \leq n$, then

(i) $R^0_\alpha(C^u_r(S_{n-r+1})) > R^0_\alpha(C^u_{r'}(S_{n-r'+1}))$ for $\alpha > 1$ or $\alpha < 0$;

(ii) $R^0_\alpha(C^u_r(S_{n-r+1})) < R^0_\alpha(C^u_{r'}(S_{n-r'+1}))$ for $0 < \alpha < 1$.

The following result is immediate from the Lemmas above.

Theorem 2.4 (\cite{7}). Among all unicycle graphs of order n,

(i) $G = C_3(S_{n-2})$ is the unique unicycle graph with the largest zeroth-order general Randić index for $\alpha > 1$ or $\alpha < 0$;

(ii) $G = C_3(S_{n-2})$ is the unique unicycle graph with the smallest zeroth-order general Randić index for $0 < \alpha < 1$.

In the following, we consider the unicycle graphs with the second and the third largest zeroth-order general Randić index for $\alpha > 1$ or $\alpha < 0$.
For any unicycle graph $G = C_{u_1, u_2, \ldots, u_k}(T_1, T_2, \ldots, T_k)$, by the transfer operation B, there is an unicycle graph $G' = C_{u_1, u_2, \ldots, u_k}(S_{i+1}, S_{l_2+1}, \ldots, S_{l+k+1})$ such that

\begin{enumerate}[(i)]
 \item $R^0_\alpha(G') \geq R^0_\alpha(G)$ for $\alpha > 1$ or $\alpha < 0$;
 \item $R^0_\alpha(G') \leq R^0_\alpha(G)$ for $0 < \alpha < 1$.
\end{enumerate}

Furthermore, if $k \geq 4$, then, by the transfer operations A and C, there is an unicycle graph $G'' = C_{u_1, u_2, u_3}(S_{i+1}, S_{l_2+1}, S_{l_3+1})$ such that

\begin{enumerate}[(i)]
 \item $R^0_\alpha(G'') \geq R^0_\alpha(G')$ for $\alpha > 1$ or $\alpha < 0$;
 \item $R^0_\alpha(G'') \leq R^0_\alpha(G')$ for $0 < \alpha < 1$.
\end{enumerate}

Let

\begin{align*}
 G_1 &= \{ C_{u_1, u_2, u_3}(S_{i+1}, S_{l_2+1}, S_{l_3+1}) \mid l_i \geq 1, i = 1, 2, 3, l_1 + l_2 + l_3 = n - 3 \}, \\
 G_2 &= \{ C_{u_1, u_2}(T_1, T_2) \mid 3 \leq r \leq 4, l_i \geq 1, i = 1, 2, l_1 + l_2 = n - r \}, \\
 G_3 &= \{ C_{u_1}(T_1) \mid 3 \leq r \leq 5, l_1 = n - r \}.
\end{align*}

By the transfer operation A, we know that

\begin{enumerate}[(i)]
 \item the largest value of zeroth-order general Randić indices of the unicycle graphs in G_1 is not more than the third largest value of zeroth-order general Randić indices of all unicycle graphs for $\alpha > 1$ or $\alpha < 0$, and the smallest value of zeroth-order general Randić indices of the unicycle graphs in G_1 is not less than the third smallest value of zeroth-order general Randić indices of all unicycle graphs for $0 < \alpha < 1$;
 \item the largest value of zeroth-order general Randić indices of the unicycle graphs in G_2 is not more than the second largest value of zeroth-order general Randić indices of all unicycle graphs for $\alpha > 1$ or $\alpha < 0$,
\end{enumerate}
and the smallest value of zeroth-order general Randić indices of the unicycle graphs in \(G_2 \) is not less than the second smallest value of zeroth-order general Randić indices of all unicycle graphs for \(0 < \alpha < 1 \).

Therefore, in order to find the unicycle graph with the second and the third largest (smallest) zeroth-order general Randić index for \(\alpha > 1 \) or \(\alpha < 0 \) \((0 < \alpha < 1)\), we only need to find

(i) the unicycle graph with the largest (smallest) zeroth-order general Randić index in \(G_1 \) for \(\alpha > 1 \) or \(\alpha < 0 \) \((0 < \alpha < 1)\); and

(ii) the unicycle graphs with the first two largest (smallest) zeroth-order general Randić index in \(G_2 \) for \(\alpha > 1 \) or \(\alpha < 0 \) \((0 < \alpha < 1)\); and

(iii) the unicycle graph with the first three largest (smallest) zeroth-order general Randić index in \(G_3 \) for \(\alpha > 1 \) or \(\alpha < 0 \) \((0 < \alpha < 1)\) and, then compare them in turn.

From the transfer operation \(A \), it is immediate that

Lemma 2.5. (i) The unicycle graph in \(G_1 \) with the largest (smallest) zeroth-order general Randić index for \(\alpha > 1 \) or \(\alpha < 0 \) \((0 < \alpha < 1)\) is

\[
G_1 = C_{3}^{u_{1}, u_{2}, u_{3}}(S_{2}, S_{2}, S_{n-4}) .
\]

(ii) The unicycle graph in \(G_2 \) with the largest (smallest) zeroth-order general Randić index for \(\alpha > 1 \) or \(\alpha < 0 \) \((0 < \alpha < 1)\) is

\[
G_{10} = C_{3}^{u_{1}, u_{2}}(S_{2}, S_{n-3}) .
\]

(iii) The unicycle graph in \(G_3 \) with the largest (smallest) zeroth-order general Randić index for \(\alpha > 1 \) or \(\alpha < 0 \) \((0 < \alpha < 1)\) is

\[
G_{2} = C_{3}(S_{n-2}) ,
\]

it is also the unicycle graph with the largest (smallest) zeroth-order general Randić index for \(\alpha > 1 \) or \(\alpha < 0 \) \((0 < \alpha < 1)\) among all unicycle graphs of order \(n \).
Lemma 2.6. The unicycle graph G_2 with the second largest (smallest) zeroth-order general Randić index for $\alpha > 1$ or $\alpha < 0$ $(0 < \alpha < 1)$ is $G_{11} = C_{3}^{u_1, u_2}(S_3, S_{n-4})$.

Proof. Let $G = C_{r}^{u_1, u_2}(T_1, T_2) \in G_2$, $3 \leq r \leq 4$, $G \neq C_{3}^{u_1, u_2}(S_2, S_{n-3})$.

Case 1. If $r = 3$, then $\{T_1, T_2\} \neq \{S_2, S_{n-3}\}$.

(1) $\{T_1, T_2\} = \{S_{l_1+1}, S_{l_2+1}\}$, where $l_1 \geq 2$, $l_2 \geq 2$, $l_1 + l_2 = n - 2$, and u_1, u_2 are the centers of T_1 and T_2, respectively. By the transfer operation A, we have

(i) $R_{\alpha}^{0}(G) \leq R_{\alpha}^{0}(G_{11})$ for $\alpha > 1$ or $\alpha < 0$;

(ii) $R_{\alpha}^{0}(G) \geq R_{\alpha}^{0}(G_{11})$ for $0 < \alpha < 1$,

where $G_{11} = C_{3}^{u_1, u_2}(S_3, S_{n-4})$, as shown in Figure 4.

(2) Otherwise, by the transfer operations A and B, we have

(i) $R_{\alpha}^{0}(G) \leq R_{\alpha}^{0}(G')$ for $\alpha > 1$ or $\alpha < 0$;

(ii) $R_{\alpha}^{0}(G) \geq R_{\alpha}^{0}(G')$ for $0 < \alpha < 1$,

where $G' = G_{11}$ or G_{12}, as shown in Figure 4.

Case 2. If $r = 4$, then by the transfer operations A and B, we have

(i) $R_{\alpha}^{0}(G) \leq R_{\alpha}^{0}(G')$ for $\alpha > 1$ or $\alpha < 0$;

(ii) $R_{\alpha}^{0}(G) \geq R_{\alpha}^{0}(G')$ for $0 < \alpha < 1$,

where $G' = G_{13}$ or G_{14}, as shown in Figure 4. Continuing the transfer operation C, we have

(i) $R_{\alpha}^{0}(G') \leq R_{\alpha}^{0}(G_{11})$ for $\alpha > 1$ or $\alpha < 0$;

(ii) $R_{\alpha}^{0}(G') \geq R_{\alpha}^{0}(G_{11})$ for $0 < \alpha < 1$.
Finally, comparing the zeroth-order general Randić indices of G_{11} and G_{12} we have

(i) $R_{\alpha}^0(G_{12}) < R_{\alpha}^0(G_{11})$ for $\alpha > 1$ or $\alpha < 0$;

(ii) $R_{\alpha}^0(G_{12}) > R_{\alpha}^0(G_{11})$ for $0 < \alpha < 1$.

The proof of Lemma 2.6 is completed.

Similarly, the unicycle graph in G_{3} with the second largest (smallest) zeroth-order general Randić index for $\alpha > 1$ or $\alpha < 0$ $(0 < \alpha < 1)$ is G_{3} and G_{7}. The unicycle graph in G_{3} with the third largest (smallest) zeroth-order general Randić index for $\alpha > 1$ or $\alpha < 0$ $(0 < \alpha < 1)$ is one of G_{4}, G_{5} and G_{6}. Comparing the zeroth-order general Randić indices of G_{4}, G_{5} and G_{6}, we have

Lemma 2.7. (i) The unicycle graph in G_{3} with the second largest (smallest) zeroth-order general Randić index for $\alpha > 1$ or $\alpha < 0$ $(0 < \alpha < 1)$ is G_{3} or G_{7};

(ii) The unicycle graph in G_{3} with the third largest (smallest) zeroth-order general Randić index for $\alpha > 1$ or $\alpha < 0$ $(0 < \alpha < 1)$ is G_{5}.

Comparing the zeroth-order general Randić indices of G_{3}, G_{7}, G_{1}, G_{10} and G_{11}, we have

Theorem 2.8. Among all unicycle graphs of order n,

(i) The unicycle graph with the second largest (smallest) zeroth-order general Randić index for $\alpha > 1$ or $\alpha < 0$ $(0 < \alpha < 1)$ is G_{10};

(ii) The unicycle graph with the third largest (smallest) zeroth-order general Randić index for $\alpha > 1$ or $\alpha < 0$ $(0 < \alpha < 1)$ is G_{3} or G_{7}.
Figure 4.
3. The Unicycle Graphs with the First Three Smallest (Largest) Values of Zeroth-Order Randić Index for \(\alpha > 1 \) or \(\alpha < 0 \) \((0 < \alpha < 1)\)

For convenience, we introduce some new transfer operations.

Transfer operation \(D \). Let \(G = C_{r}^{u_{1},u_{2},\ldots,u_{k}}(T_{1},\ldots,T_{i},\ldots,T_{k}) \), \(k \geq 1 \). If \(T_{i} \) is not a path, or \(T_{i} \) is a path and \(u_{i} \) is not the end-vertex of the path, then \(G \) can be changed into \(G' = C_{r}^{u_{1},\ldots,u_{i},\ldots,u_{k}}(T_{1},\ldots,P_{i+1}^{l_{i}}),\ldots,T_{k}) \) after the transfer operation \(D \), where \(l_{i} + 1 = n(T_{i}) \) and \(u_{i} \) is the end-vertex of \(P_{i+1}^{l_{i}} \), as shown in Figure 5.

Lemma 3.1. For the two graphs \(G \) and \(G' \) above, we have

(i) \(R_{0}^{0}(G') < R_{0}^{0}(G) \) for \(\alpha > 1 \) or \(\alpha < 0 \);

(ii) \(R_{0}^{0}(G') > R_{0}^{0}(G) \) for \(0 < \alpha < 1 \).

Proof. By the definition of \(R_{0}^{0}(G) \), we have

\[
\Delta = R_{0}^{0}(G) - R_{0}^{0}(G')
\]

\[
= R_{0}^{0}(T_{i}) - R_{0}^{0}(P_{i+1}^{l_{i}}) + [(p + 2)^{\alpha} - 3^{\alpha}] - [p^{\alpha} - 1^{\alpha}]
\]
= R^0_\alpha(T_i) - R^0_\alpha(P_{i+1}) + [(p + 2)^\alpha - p^\alpha] - [3^\alpha - 1^\alpha] \\
= R^0_\alpha(T_i) - R^0_\alpha(P_{i+1}) + 2\alpha(\xi^{\alpha-1} - \eta^{\alpha-1}),

where \(\xi \in (p, p + 2), \eta \in (1, 3) \) (or \(\xi \in (3, p + 2), \eta \in (1, p) \)).

Let \(\Delta_1 = f(T_i) - f(P_{i+1}), \Delta_2 = \alpha(\xi^{\alpha-1} - \eta^{\alpha-1}). \)

If \(\alpha > 1 \) or \(\alpha < 0 \), then \(\Delta_2 \geq 0 \); and \(\Delta_1 \geq 0 \) from [9]. And at least one of the equalities strictly holds. So, \(\Delta > 0 \).

If \(0 < \alpha < 1 \), then \(\Delta_2 < 0 \); and \(\Delta_1 < 0 \) from [9]. And at least one of the inequalities strictly holds. So, \(\Delta < 0 \).

The proof of Lemma 3.1 is completed.

Remark. Repeating the operations \(D \), any unicycle graph
\[G = C_{r_1, r_2, \ldots, r_k} (T_1, T_2, \ldots, T_k) \]
can be changed into
\[C_{r_1, r_2, \ldots, r_k} (P_{1+1}, P_{2+1}, \ldots, P_{k+1}). \]

For any unicycle graph \(G = C_{r_1, r_2, \ldots, r_k} (T_1, T_2, \ldots, T_k) \), we can see from Lemma 3.1 that

(i) \(R^0_\alpha(G) \geq R^0_\alpha(C_{r_1, r_2, \ldots, r_k} (P_{1+1}, P_{2+1}, \ldots, P_{k+1})) \) for \(\alpha > 1 \) or \(\alpha < 0 \);

(ii) \(R^0_\alpha(G) \leq R^0_\alpha(C_{r_1, r_2, \ldots, r_k} (P_{1+1}, P_{2+1}, \ldots, P_{k+1})) \) for \(0 < \alpha < 1 \).

And the equality holds if and only if
\[G = C_{r_1, r_2, \ldots, r_k} (P_{1+1}, P_{2+1}, \ldots, P_{k+1}). \]

Transfer operation \(F \). Let \(G = C_{r_1, r_2, \ldots, r_k} (P_{1+1}, P_{2+1}, \ldots, P_{k+1}) \).

If \(k > 1 \), then \(G \) can be changed into
\[G' = C_{r_1, \ldots, r_{k-1}} (P_{1+1}, P_{2+1}, \ldots, P_{k-1}+l_{k+1}). \]
Lemma 3.2. For the two graphs G and G' above, we have

(i) $R_{\alpha}^0(G') < R_{\alpha}^0(G)$ for $\alpha > 1$ or $\alpha < 0$;

(ii) $R_{\alpha}^0(G') > R_{\alpha}^0(G)$ for $0 < \alpha < 1$.

Proof. By the definition of $R_{\alpha}^0(G)$, we have

$$\Delta = R_{\alpha}^0(G') - R_{\alpha}^0(G)$$

$$= [2^\alpha + 2^\alpha] - [3^\alpha + 1^\alpha]$$

$$= [2^\alpha - 1^\alpha] - [3^\alpha - 2^\alpha]$$

$$= \alpha(\zeta\alpha^{-1} - \eta\alpha^{-1}),$$

where $\zeta \in (1, 2)$, $\eta \in (2, 3)$. And $\xi < \eta$, $\Delta < 0$ for $\alpha > 1$ or $\alpha < 0$, $\Delta > 0$ for $0 < \alpha < 1$. The proof of Lemma 3.2 is completed.

Remark. Repeating the operation F, any unicycle graph $G = C_{r_1, u_2, \ldots, u_k}(P_{l_1 + 1}, P_{l_2 + 1}, \ldots, P_{l_k + 1})$ can be changed into $C_{r}^{u_1}(P_{n-r+1})$, as shown in Figure 6.

Therefore, any unicycle graph $G = C_{r_1, u_2, \ldots, u_k}(T_1, T_2, \ldots, T_k)$ can be changed into $C_{r}^{u_1}(P_{n-r+1})$ after the operations D and F.

Figure 6. $C_{r}^{u_1}(P_{n-r+1})$.
Lemma 3.3. If $3 \leq r < n$, then

(i) $R_{\alpha}^{0}(C_{r}^{\text{un}}(P_{n-r+1})) > R_{\alpha}^{0}(C_{n})$ for $\alpha > 1$ or $\alpha < 0$;

(ii) $R_{\alpha}^{0}(C_{r}^{\text{un}}(P_{n-r+1})) < R_{\alpha}^{0}(C_{n})$ for $0 < \alpha < 1$.

Proof. If $3 \leq r < n$, then the degree sequence of $C_{r}^{\text{un}}(P_{n-r+1})$ is $[1, 2, \ldots, 2 \cdots, 3]$. The degree sequence of C_{n} is $[2, 2, \ldots, 2 \cdots, 2]$. By the definition of $R_{\alpha}^{0}(G)$, we have

$$\Delta = R_{\alpha}^{0}(C_{r}^{\text{un}}(P_{n-r+1})) - R_{\alpha}^{0}(C_{n})$$

$$= [1^{\alpha} + 3^{\alpha}] - [2^{\alpha} + 2^{\alpha}]$$

$$= [3^{\alpha} - 2^{\alpha}] - [2^{\alpha} - 1^{\alpha}]$$

$$= \alpha(\xi^{\alpha-1} - \eta^{\alpha-1}),$$

where $\xi \in (2, 3)$, $\eta \in (1, 2)$. And $\Delta > 0$ for $\alpha > 1$ or $\alpha < 0$, $\Delta < 0$ for $0 < \alpha < 1$. The proof of Lemma 3.3 is completed.

From Lemmas 3.1 and 3.2, the following result is immediate.

Theorem 3.4. Among all unicycle graphs,

(i) C_{n} is the unique unicycle graph with the smallest (largest) zeroth-order general Randić index for $\alpha > 1$ or $\alpha < 0$ ($0 < \alpha < 1$);

(ii) the unicycle graphs with the second smallest (largest) zeroth-order general Randić index for $\alpha > 1$ or $\alpha < 0$ ($0 < \alpha < 1$) are $C_{r}^{\text{un}}(P_{n-r+1})$, $3 \leq r \leq n-1$, their degree sequences are $[1, 2, \ldots, 2 \cdots, 3]$.

In the following, we consider the unicycle graph with third smallest (largest) zeroth-order general Randić index for $\alpha > 1$ or $\alpha < 0$ ($0 < \alpha < 1$).
Let

\[\mathcal{F}_1 = \{ C_{r_1}^{u_1, u_2}(P_{l_1 + 1}, P_{l_2 + 1}) | l_1, l_2 \geq 1, l_1 + l_2 = n - r, r \geq 3 \} \]

\[\mathcal{F}_2 = \{ C_{r_1}^{u_1}(T_1) | 3 \leq r \leq n - 1 \}. \]

For any unicycle \(G = C_{r_1}^{u_1, u_2, \ldots, u_k}(T_1, \ldots, T_1, \ldots, T_k) \), if \(k \geq 3 \), then by the operations \(D \) and \(F \), there is \(G' \in \mathcal{F}_1 \) such that

(i) \(R^0_{\alpha}(G) > R^0_{\alpha}(G') \) for \(\alpha > 1 \) or \(\alpha < 0 \);

(ii) \(R^0_{\alpha}(G) < R^0_{\alpha}(G') \) for \(0 < \alpha < 1 \).

Similarly, for any unicycle graph \(G \in \mathcal{F}_1 \), there is \(G' \in \mathcal{F}_2 \) such that

(i) \(R^0_{\alpha}(G) > R^0_{\alpha}(G') \) for \(\alpha > 1 \) or \(\alpha < 0 \);

(ii) \(R^0_{\alpha}(G) < R^0_{\alpha}(G') \) for \(0 < \alpha < 1 \).

Therefore, the smallest value of zeroth-order general Randić indices of the unicycle graphs in \(\mathcal{F}_1 \) is not less than the third smallest value of zeroth-order general Randić indices of all unicycle graphs for \(\alpha > 1 \) or \(\alpha < 0 \); and the largest value of zeroth-order general Randić indices of the unicycle graphs in \(\mathcal{F}_1 \) is not more than the third largest value of zeroth-order general Randić indices of all unicycle graphs for \(0 < \alpha < 1 \).

In order to find the unicycle graph with the third smallest (largest) zeroth-order general Randić index for \(\alpha > 1 \) or \(\alpha < 0 \) (\(0 < \alpha < 1 \)), we only need to find

(i) the unicycle graph with the smallest (largest) zeroth-order general Randić index in \(\mathcal{F}_1 \) for \(\alpha > 1 \) or \(\alpha < 0 \) (\(0 < \alpha < 1 \)); and

(ii) the unicycle graphs with the second smallest (largest) zeroth-order general Randić index in \(\mathcal{F}_2 \) for \(\alpha > 1 \) or \(\alpha < 0 \) (\(0 < \alpha < 1 \)) and, then compare them in turn.

Note that the degree sequences of graphs in \(\mathcal{F}_1 \) are \([1, 1, 2, \ldots, 2, 3, 3]\), and their zeroth-order general Randić indices are the same value:
$R^0_\alpha(G) = 2 + 2^\alpha(n - 4) + 2 \cdot 3^\alpha$.

So, we only need to find the unicycle graphs with the second smallest (largest) zeroth-order general Randić index in F_2 for $\alpha > 1$ or $\alpha < 0$ ($0 < \alpha < 1$).

Let $D(G) = [d_1, d_2, \ldots, d_n]$ be the degree sequence of unicycle graph G with order n, where $d_i \geq d_j + 2$. G' is obtained by replacing (d_i, d_j) with $(d_i - 1, d_j + 1)$ in $D(G)$, i.e.,

$$D(G') = [d_1, \ldots, d_{i-1}, d_i - 1, d_{i+1}, \ldots, d_{j-1}, d_j + 1, d_{j+1}, \ldots, d_n].$$

Lemma 3.4 ([9]). For the two graphs G and G' above, we have

(i) $R^0_\alpha(G) > R^0_\alpha(G')$ for $\alpha > 1$ or $\alpha < 0$;

(ii) $R^0_\alpha(G) < R^0_\alpha(G')$ for $0 < \alpha < 1$.

Lemma 3.5. The graphs in F_2 with the degree sequence $D(G) = [1, 1, 2, \ldots, 2, 3, 3]$ are the unicycle graphs with the second smallest (largest) zeroth-order general Randić index in F_2 for $\alpha > 1$ or $\alpha < 0$ ($0 < \alpha < 1$).

Proof. Let $G = C^m_n(T_1)$ be the unicycle graph in F_2 with the second smallest (largest) for $\alpha > 1$ or $\alpha < 0$ ($0 < \alpha < 1$). Since $r \leq n - 1$, G must have at least one vertex with degree more than 2.

If F_0 is the unicycle graph with the smallest (largest) zeroth-order general Randić index in F_2 for $\alpha > 1$ or $\alpha < 0$ ($0 < \alpha < 1$), then, by Theorem 3.1, the degree sequence of F_0 is $[1, 2, \ldots, 2, 3]$.

Therefore, G must have at least two vertices with degree more than 2.

If the degree sequence of G is not $[1, 1, 2, \ldots, 2, 3, 3]$, then, by Lemma 3.4, there is an unicycle graph $G' \in F_2$ such that $D(G') = [1, 1, 2, \ldots, 2, 3, 3]$, and
(i) $R_\alpha^0(G) > R_\alpha^0(G') > R_\alpha^0(F_0)$ for $\alpha > 1$ or $\alpha < 0$;

(ii) $R_\alpha^0(G) < R_\alpha^0(G') < R_\alpha^0(F_0)$ for $0 < \alpha < 1$.

This contradicts that G is the unicycle graph in F_2 with the second smallest (largest) for $\alpha > 1$ or $\alpha < 0$ ($0 < \alpha < 1$). So, the degree sequence of G is $D(G) = [1, 1, 2, \ldots, 2, 3, 3]$.

Since the degree sequence of the graph in F_1 is $[1, 1, 2, \ldots, 2, 3, 3]$, combining Lemma 3.5 and the above, we have

Theorem 3.2. Among all the unicycle graphs of order n, the unicycle graphs with the third smallest (largest) zeroth-order general Randić index for $\alpha > 1$ or $\alpha < 0$ ($0 < \alpha < 1$) are the graphs whose degree sequences are $[1, 1, 2, \ldots, 2, 3, 3]$.

Acknowledgement

This work was partially supported by the Research fund of Huaiyin Institute of Technology (HGQ 0726).

References

